torchsar.calibration package¶
Submodules¶
torchsar.calibration.channel_process module¶
- torchsar.calibration.channel_process.iq_correct(Sr)¶
IQ Correction performs the I Q data correction
IQ Correction performs the I Q data correction
I/Q bias removal
I/Q gain imbalance correction
I/Q non-orthogonality correction
see “Sentinel-1-Level-1-Detailed-Algorithm-Definition”.
- Parameters
Sr (Tensor) – SAR raw data matrix \({\bm S}_r \in {\mathbb R}^{N_a×N_r×2}\)
- Returns
Corrected SAR raw data. Flag : dict
- Return type
Sr (Tensor)
torchsar.calibration.gain_compensation module¶
- torchsar.calibration.gain_compensation.vga_gain_compensation(S, V, mod='linear', fact=1.0)¶
vga gain compensation
vga gain compensation
\[\begin{aligned} {\bm F} &= (λ 10^{{\bm V}/20})\\ {\bm S}_{c} &= {\bm F} \odot {\bm S} \end{aligned} \]- Parameters
S (torch tensor) –
S
is an \(N_a×N_r×2\) array, where, \(S[:,:,0]\) is the I signal and \(S[:,:,1]\) is the Q signal.V (torch tensor) –
S
is an \(N_a×N_r\) or \(N_a×1\) VGA gain array, the gain values are indB
unit.mod (str, optional) – compensation mode (the default is ‘linear’)
fact (number, optional) – fact is the factor \(\lambda\) (the default is 1.0)
- Returns
compensated signal, \(N_a×N_r×2\) array.
- Return type
torch tensor
torchsar.calibration.multilook_process module¶
- torchsar.calibration.multilook_process.multilook_spatial(Sslc, nlooks)¶
spatial multilook processing
spatial averaging in azimuth or range direction.